Chemical Composition and Biosynthesis of Dietary Fiber Components

Plant cell walls are constituted by lignin and several homo- and heteropolysaccharides which include cellulose, hemicelluloses and pectins. Cellulose is a linear polymer constituted of D-glucopyranosyl residues joint by β-glycosidic bonds and constitutes the major building block of the wall structure. Soluble and insoluble hemicelluloses are classified into xylans, xyloglucan, arabynoxlans, mannans, glucomannans, and β-glucans. Pectins are covalently bound galacturonic acid-rich polysaccharides divided into galacturonans, or rhamnogalacturonan. Both types of pectins form gels and find widespread use in the food industry. β-glucans are inherent to cell walls of cereals, bacteria, algae and yeast and usually form a linear backbone primarily with 1–3 or 1–4 β-glycosidic linkages varying in molecular weight and branching. Fructans are polyfructosylfructose of four to several hundred residues that possess a sucrose core. Fructans are categorized into inulins, levans or phleins and gramminans. And lignin, considered as the second most abundant cell wall component, is synthesized to form the plant vascular system and to impart strength and structural support.
This is a preview of subscription content, log in via an institution to check access.
Access this chapter
Subscribe and save
Springer+ Basic
€32.70 /Month
- Get 10 units per month
- Download Article/Chapter or eBook
- 1 Unit = 1 Article or 1 Chapter
- Cancel anytime
Buy Now
Price includes VAT (France)
eBook EUR 85.59 Price includes VAT (France)
Softcover Book EUR 158.24 Price includes VAT (France)
Hardcover Book EUR 105.49 Price includes VAT (France)
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others

Characterizing the non-starch polysaccharides of hempseed cell walls
Article 15 April 2024

Wheat Cell Wall Polysaccharides (Dietary Fibre)
Chapter © 2020

Arabinoxylans
Chapter © 2021
References
- Abed SM, Ali AH, Noman A (2016) Inulin as prebiotics and its applications in food industry and human health; a review. Int J Agric Innov Res 5(1):88–97 Google Scholar
- Adler E (1977) Lignin chemistry-past, present and future. Wood Sci Technol 11(3):169–218 ArticleCASGoogle Scholar
- Albersheim P (1975) The walls of growing plant cells. Sci Am 232(4):80–95 ArticleCASPubMedGoogle Scholar
- Anders N, Wilkinson MD, Lovegrove A, Freeman J, Tryfona T, Pellny TK, Weimar T, Mortimer JC, Stott K, Baker JM, Defoin-Platel M, Shewry PR, Dupree P, Mitchell RA (2012) Glycosyl transferases in family 61 mediate arabinofuranosyl transfer onto xylan in grasses. Proc Natl Acad Sci U. S. A. 109(3):989–993 ArticleCASPubMedPubMed CentralGoogle Scholar
- Andersson R, Westerlund E, Åman P (2006) Cell-wall polysaccharides: structural, chemical, and analytical aspects. In: Eliasson AC (ed) Carbohydrates in food, Second edn. CRC, Boca Raton, pp 129–166 Google Scholar
- Arioli T, Peng L, Betzner AS, Burn J, Wittke W, Herth W, Camilleri C, Hofte H, Plazinski J, Birch R, Cork A, Glover J, Redmond J, Williamson RE (1998) Molecular analysis of cellulose biosynthesis in Arabidopsis. Science 279(5351):717–720 ArticleCASPubMedGoogle Scholar
- Arrizon J, Morel S, Gschaedler A, Monsan P (2010) Comparison of the watersoluble carbohydrate composition and fructan structures of Agave tequilana plants of different ages. Food Chem 122(1):123–130 ArticleCASGoogle Scholar
- Aspinall GO (1982) Analysis of polysaccharides. In: Lineback DR, Inglett GE (eds) Food carbohydrates. AVI Publishing Co., Westport, pp 356–374 Google Scholar
- Bacic A, Fincher GB, Stone BA (2009) Chemistry, biochemistry, and biology of (1–3)-[beta]-glucans and related polysaccharides, 1st edn. Academic, Amsterdam Google Scholar
- Bielecki S, Krystynowicz A, Turkiewicz M, Kalinowska H (2002) Bacterial cellulose. In: Vandamme EJ, De Baerts S, Steinbuechel A (eds) Biopolymers, vol 5. Wiley-VCH Verlag GmbH, Weinheim, p 37 Google Scholar
- Boerjan W, Ralph J, Baucher M (2003) Lignin biosynthesis. Annu Rev Plant Biol 54(1):519–546 ArticleCASPubMedGoogle Scholar
- Boulahrouf A, Fonty G, Gouet P (1991) Establishment, counts, and identification of the fibrolytic microflora in the digestive tract of rabbit. Influence of feed cellulose content. Curr Microbiol 22(1):21–25 ArticleGoogle Scholar
- Brabham C, Debolt S (2012) Chemical genetics to examine cellulose biosynthesis. Front Plant Sci 3:309 PubMedGoogle Scholar
- Brett CT (2000) Cellulose microfibrils in plants: biosynthesis, deposition, and integration into the cell wall. Int Rev Cytol 199:161 ArticleCASPubMedGoogle Scholar
- Broekaert WF, Courtin CM, Verbeke K, Van de Wiele T, Verstraete W, Delcour JA (2011) Prebiotic and other health-related effects of cereal-derived arabinoxylans, arabinoxylan-oligosaccharides, and xylooligosaccharides. Crit Rev Food Sci Nutr 51(2):178–194 ArticleCASPubMedGoogle Scholar
- Brownfield L, Doblin M, Fincher GB, Bacic A (2009) Biochemical and molecular properties of biosynthetic enzymes for (1-3)-β-glucans in embryophytes, chlorophytes, and rhodophytes. In: Bacic A, Fincher GB, Stone BA (eds) Chemistry, biochemistry and biology of (1-3) β-glucans and related polysaccharides. Academic, Burlington, pp 286–326 Google Scholar
- Brown GD, Williams DL (2009) (1,3)-β-glucans in innate immunity: mammalian systems. In: Bacic A, Fincher GB, Stone BA (eds) Chemistry, biochemistry and biology of (1–3) β-glucans and related polysaccharides. Academic, Burlington, pp 579–620 Google Scholar
- Brown RM Jr (1999) Cellulose structure and biosynthesis. Pure Appl Chem 71(5):767–775 ArticleCASGoogle Scholar
- Brown RM Jr (2004) Cellulose structure and biosynthesis: what is in store for the 21st century? J Polym Sci A Polym Chem 42(3):487–495 ArticleCASGoogle Scholar
- Chen H (2014) Chemical composition and structure of natural lignocellulose. In: Chen H (ed) Biotechnology of lignocellulose: theory and practice. Springer, Netherlands, pp 25–71 ChapterGoogle Scholar
- Carpita NC, Keller F, Gibeaut DM, Housley TL, Matile P (1991) Synthesis of inulin oligomers in tissue slices, protoplasts and intact vacuoles of Jerusalem artichoke. J Plant Physiol 138(2):204–210 ArticleCASGoogle Scholar
- Carvajal-Millán E, Rascón-Chu A, Márquez-Escalante J, Micard V, Ponce de León N, Gardea A (2007) Maize extraction gum: characterization and functional properties. Carbohydr Polym 69(2):280–285 ArticleCASGoogle Scholar
- Chanliaud E, Saulnier L, Thibault JF (1995) Alkaline extraction and characterisation of heteroxylans from maize bran. J Cereal Sci 21(2):195–203 ArticleCASGoogle Scholar
- Chiniquy D, Sharma V, Schultink A, Baidoo EE, Rautengarten C, Cheng K, Carroll A, Ulvskov P, Harholt J, Keasling JD, Pauly M, Scheller HV, Ronald PC (2012) XAX1 from glycosyltransferase family 61 mediates xylosyltransfer to rice xylan. Proc Natl Acad Sci U. S. A 109(42):17117–17122 ArticleCASPubMedPubMed CentralGoogle Scholar
- Coffey DG, Bell DA, Henderson A (2006) Cellulose and cellulose derivatives. In: Stephen AM, Phillips GO, Williams PA (eds) Food polysaccharides and their applications. Taylor & Francis, Boca Raton, pp 148–180 Google Scholar
- Courtin CM, Delcour A (2002) Arabinoxylans and endoxylanases in wheat flour bread-baking. J Cereal Sci 35(3):225–243 ArticleCASGoogle Scholar
- Cumming CM, Rizkallah HD, McKendrick KA, Abdel-Massih RM, Baydoun EAH, Brett CT (2005) Biosynthesis and cell-wall deposition of a pectin-xyloglucan complex in pea. Planta 222(3):546–555 ArticleCASPubMedGoogle Scholar
- Cosgrove DJ (2005) Growth of the plant cell wall. Nat Rev Mol Cell Biol 6(11):850–861 Google Scholar
- Davies LM, Harris PJ (2003) Atomic force microscopy of microfibrils in primary cell walls. Planta 217(2):283–289 ArticleCASPubMedGoogle Scholar
- De Leenheer L, Hoebregs H (1994) Progress in the elucidation of the composition of chicory inulin. Starch 46:193–196 Google Scholar
- Delmer DP (1999) Cellulose biosynthesis: exciting times for a difficult field of study. Annu Rev Plant Physiol Mol Biol 50(1):245–276 ArticleCASGoogle Scholar
- Derbyshire P, McCann MC, Roberts K (2007) Restricted cell elongation in Arabidopsis hypocotyls is associated with a reduced average pectin esterification level. BMC Plant Biol 7(1):31 ArticlePubMedPubMed CentralCASGoogle Scholar
- Desprez T, Juraniec M, Crowell EF, Jouy H, Pochylova Z, Parcy F, Hofte H, Gonneau M, Vernhettes S (2007) Organization of cellulose synthase complexes involved in primary cell wall synthesis in Arabidopsis thaliana. Proc Natl Acad Sci U. S. A 104(39):15572–15577 ArticleCASPubMedPubMed CentralGoogle Scholar
- DeVries JA, Rombouts FM, Voragen AGJ, Pilnik W (1982) Enzymic degradation of apple pectins. Carbohydr Polym 2(1):25–33 ArticleCASGoogle Scholar
- Dhingra D, Michael M, Rajput H, Patil RT (2011) Dietary fibre in foods, a review. J Food Sci Technol 49(3):255–266 ArticlePubMedPubMed CentralCASGoogle Scholar
- Doblin MS, Kurek I, Jacob-Wilk D, Delmer DP (2002) Cellulose biosynthesis in plants: from genes to rosettes. Plant Cell Physiol 43(12):1407–1420 ArticleCASPubMedGoogle Scholar
- Doner LW, Johnston D, Singh V (2001) Analysis and properties of arabinoxylans from discrete corn wet-milling fiber fractions. J Agric Food Chem 49(3):1266–1269 ArticleCASPubMedGoogle Scholar
- Douglas CM (2001) Fungal b (1,3)-D-glucan synthesis. Med Mycol 39(Supplement 1):55–66 ArticleCASPubMedGoogle Scholar
- Edelman J, Jefford TG (1968) The mechanisim of fructosan metabolism in higher plants as exemplified in Helianthus tuberosus. New Phytol 67(3):517–531 ArticleCASGoogle Scholar
- Everson HP, Waldron KW, Geeson JD, Browne KM (1992) Effects of modified atmospheres on textural and cell wall changes of asparagus during shelf-life. Int J Food Sci Technol 27(2):187–199 ArticleCASGoogle Scholar
- Franck A (2006) Inulin. In: Stephen AM, Phillips GO, Williams PA (eds) Food polysaccharides and their applications. Taylor & Francis, Boca Raton, pp 335–351 ChapterGoogle Scholar
- Freudenberg K, Neish AC (1968) Constitution and biosynthesis of lignin. Springer, Berlin, pp 46–129 BookGoogle Scholar
- French AD, Waterhouse AL (1993) Chemical structure and characteristics of fructans. In: Suzuki M, Chatterton NJ (eds) Science and technology of fructans. CRC Press, Boca Raton, pp 41–81 Google Scholar
- Gidley MJ, Nishinari K (2009) Physico-chemistry of (1,3) β-glucans. In: Bacic A, Fincher GB, Stone BA (eds) Chemistry, biochemistry and biology of (1–3) β-glucans and related polysaccharides. Academic, Burlington, pp 47–118 Google Scholar
- Glasser WG (1980) Lignification: formation of lignin in wood. In: Casey JP (ed) Pulp and Paper, vol 1, 3rd edn. Wiley, New York, pp 41–51 Google Scholar
- Guillon F, Thibault JF (1989) Methylation analysis and mild acid hydrolysis of the “hairy” fragments of sugar-beet pectins. Carbohydr Res 190(1):85–96 ArticleCASGoogle Scholar
- Hayashi T (1989) Xyloglucans in the primary cell walls. Annu Rev Plant Physiol Plant Mol Biol 40:139–168 ArticleCASGoogle Scholar
- Hellwege E, Gitscher D, Wilmitzer L, Heyer AG (1997) Transgenic potato tubers accumulate high levels of 1-kestose and nystose. Plant J 12:1057–1065 ArticleCASPubMedGoogle Scholar
- Higuchi T (1985) Biosynthesis of lignin. In: Biosynthesis and biodegradation of wood components. Academic, London, pp 141–162 ChapterGoogle Scholar
- Housley TL, Pollock CJ (1993) The metabolism of fructan in higher plants. In: Suzuki M, Chatterton NJ (eds) Science and technology of fructans. CRC Press, Boca Raton, pp 191–225 Google Scholar
- Ibar C, Orellana A (2007) The import of S-adenosylmethionine into the Golgi apparatus is required for the methylation of homogalacturonan. Plant Physiol 145(2):504–512 ArticleCASPubMedPubMed CentralGoogle Scholar
- Iiyama K, Lam TBT, Stone BA (1994) Covalent cross-links in the cell wall. Plant Physiol 104(2):315–320 ArticleCASPubMedPubMed CentralGoogle Scholar
- Izydorczyk MS, Biliaderis CG (1992) Effect of molecular size on physical properties of wheat arabinoxylan. J Agric Food Chem 40(4):561–568 ArticleCASGoogle Scholar
- Izydorczyc MS, Biliaderis CG (1995) Cereal arabinoxylans: advances in structure and physicochemical properties. Carbohydr Polym 28(1):33–48 ArticleGoogle Scholar
- Julliand V, de Vaux A, Millet L, Fonty G (1999) Identification of Ruminococcus flavefaciens as the predominant cellulolytic bacterial species of the equine cecum. Appl Environ Microbiol 65(8):3738–3741 ArticleCASPubMedPubMed CentralGoogle Scholar
- Krumm C, Pfaendtner J, Dauenhauer PJ (2016) Millisecond pulsed films unify the mechanisms of cellulose fragmentation. Chem Mater 28(9):3108–3114 ArticleCASGoogle Scholar
- Kimura S, Itoh T (2001) Occurrence of high crystalline cellulose in the most primitive tunicate, appendicularian. Prog Biotechnol 18:121–125 CASGoogle Scholar
- Kimura S, Kondo T (2002) Recent progress in cellulose biosynthesis. J Plant Res 115(4):297–302 ArticleCASPubMedGoogle Scholar
- Koops AJ, Jonker HH (1996) Purification and characterisation of the enzymes of fructan biosynthesis in tubers of Helianthus tuberosus Colombia, II. Purification of sucrose:sucrose 1-Fructosyltransferase and reconstitution of fructan synthesis in vitro with purified sucrose:sucrose 1-fructosyltransferase and fructan:fructan 1-fructosyltransferase. Plant Physiol 110(4):1167–1175 ArticleCASPubMedPubMed CentralGoogle Scholar
- Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44(22):3358–3393 ArticleCASGoogle Scholar
- Koyama M, Helbert W, Imai T, Sugiyama J, Henrissat B (1997) Parallel-up structure evidences the molecular directionality during biosynthesis of bacterial cellulose. Proc Natl Acad Sci 94(17):9091–9095 ArticleCASPubMedPubMed CentralGoogle Scholar
- Kale MS, Pai DA, Hamaker BR, Campanella OH (2010). Structure-function relationships for corn bran arabinoxylans. J Cereal Sci 52:368–372 Google Scholar
- Lan W, Lu F, Regner M, Zhu Y, Rencoret J, Ralph SA, Zakai UI, Morreel K, Boerjan W, Ralph J (2015) Tricin, a flavonoid monomer in monocot lignification. Plant Physiol 167(4):1284–1295 ArticleCASPubMedPubMed CentralGoogle Scholar
- Lei L, Li S, Gu Y (2012) Cellulose synthase complexes: composition and regulation. Front Plant Sci 3:75 ArticleCASPubMedPubMed CentralGoogle Scholar
- Leclere L, Van Cutsem P, Michiels C (2013) Anti-cancer activities of pH- or heat- modified pectin. Front Pharmacol 128(4):1–8 Google Scholar
- Lineback DR (1999) The chemistry of complex carbohydrates. Chapter 10. In: Cho SS, Prosky L, Drehereds M (eds) Complex carbohydrates in foods. Marcel Dekker, Inc, New York Google Scholar
- Li S, Gu Y (2012) Cellulose biosynthesis in higher plants and the role of the cytoskeleton. In: Hetherington AM (ed) eLS. Wiley, Chichester, pp 1–8. https://doi.org/10.1002/9780470015902.a0023745ChapterGoogle Scholar
- Li S, Bashline L, Lei L, Gu Y (2014) Cellulose synthesis and its regulation. The Arabidopsis Book/Am Soc Plant Biologists 12:e0169. https://doi.org/10.1199/tab.0169.ArticleGoogle Scholar
- Lopez MG, Mancilla-Margalli NA, Mendoza-Díaz G (2003) Molecular structures of fructans from Agave tequilana Weber var. Azul. J Agric Food Chem 51(27):7835–7840 ArticleCASPubMedGoogle Scholar
- Lovegrove A, Wilkinson MD, Freeman J, Pellny TK, Tosi P, Saulnier L, Shewry PR, Mitchell RA (2013) RNA interference suppression of genes in glycosyl transferase families 43 and 47 in wheat starchy endosperm causes large decreases in arabinoxylan content. Plant Physiol 163(1):95–107 ArticleCASPubMedPubMed CentralGoogle Scholar
- Lu FC, Ralph J (2010) Lignin. In: Sun RC (ed) Cereal straw as a resource for sustainable biomaterials and biofuels: chemistry, extractives, lignins, hemicelluloses and cellulose, 1st edn. Elsevier, Oxford, pp 169–208 ChapterGoogle Scholar
- Maleki SS, Mohammadi K, Ji K (2016) Characterization of cellulose synthesis in plant cells. Sci World J 2016:1–8 ArticleCASGoogle Scholar
- Maurer A, Fengel D (1992) Parallel orientation of the molecular chains in cellulose-I and Cellulose-Ii deriving from higher-plants. Eur J Wood Wood Prod 50(12):493–493 ArticleCASGoogle Scholar
- McMurrough I, Rose AH (1967) Effect of growth rate and substrate limitation on the composition and structure of the cell wall of Saccharomyces cerevisiae. Biochem J 105(1):189–203 ArticleCASPubMedPubMed CentralGoogle Scholar
- Meyer WJM, Matthysen EWJM, Borm GEL (1993) Crop characteristics and inulin production of Jerusalem artichoke and chicory. In: Fuchs A (ed) Inulin and inulin-containing crops, studies in plant science, Third edn. Elsevier Science Publishers, Amsterdam, p 29 Google Scholar
- Mitchell RA, Dupree P, Shewry PR (2007) A novel bioinformatics approach identifies candidate genes for the synthesis and feruloylation of arabinoxylan. Plant Physiol 144(1):43–53 ArticleCASPubMedPubMed CentralGoogle Scholar
- Mohnen D (2008) Pectin structure and biosynthesis. Curr Opin Plant Biol 11:266–277 ArticleCASPubMedGoogle Scholar
- Mokochinski JB, Bataglion GA, Kiyota E, de Souza LM, Mazzafera P, Sawaya AC (2015) A simple protocol to determine lignin S/G ratio in plants by UHPLC-MS. Anal Bioanal Chem 407(23):7221–7227 ArticleCASPubMedGoogle Scholar
- Mongeau R, Brooks SPJ (2001) Chemistry and analysis of lignin. In: Cho SS, Dreher ML (eds) Handbook of dietary fiber. Marcel Dekker, New York, pp 321–375 ChapterGoogle Scholar
- Monties B (1989) Lignins. In: Dey PM, Harborne JB (eds) Methods in plant biochemistry, Plant Phenolics, vol 1. Academic, New York, pp 113–157 Google Scholar
- Monties B (1991) Recent advances in structural and biosynthetic variability of lignins. In: Wallis A (ed) Proc. 6th International Symposium on Wood Pulping Chemistry, vol 1. APPITA Publishing, Carlton, pp 113–123 Google Scholar
- Moreira LR, Filho EX (2008) An overview of mannan structure and mannan-degrading enzyme systems. Appl Microbiol Biotechnol 79(2):165–178 ArticleCASPubMedGoogle Scholar
- Nebenfuhr A, Gallagher LA, Dunahay TG, Frohlick JA, Mazurkiewicz AM, Meehl JB, Staehelin LA (1999) Stop-and-go movements of plant golgi stacks are mediated by the acto-myosin system. Plant Physiol 121(4):1127–1141 ArticleCASPubMedPubMed CentralGoogle Scholar
- Niño-Medina G, Carvajal-Millán E, Rascón-Chu A, Márquez-Escalante J, Guerrero V, Salas-Muñoz E (2010) Ferulated arabinoxylans and arabinoxylans gels: structure, sources and applications. Phytochem Rev 9(1):111–120 ArticleCASGoogle Scholar
- Nishinari K, Takemasa M, Yamatoya M, Shirakawa M (2009) Xyloglucan. In: Phillips GO, Williams PA (eds) Handbook of hydrocolloids. CRC Press, Boca Raton, pp 535–566 ChapterGoogle Scholar
- Nobles DR, Romanovicz DK, Brown RM Jr (2001) Cellulose biosynthesis in the cyanobacteria. Origin of vascular plant synthase? Plant Physiol 127(2):529–542 ArticleCASPubMedPubMed CentralGoogle Scholar
- Ogo Y, Ozawa K, Ishimaru T, Murayama T, Takaiwa F (2013) Transgenic rice seed synthesizing diverse flavonoids at high levels: a new platform for flavonoid production with associated health benefits. Plant Biotechnol J 11(6):734–746 ArticleCASPubMedGoogle Scholar
- O’Neill M, Albersheim P, Darvill A (1990) The pectic polysaccharides of primary cell walls. In: Dey PM (ed) Methods in plant biochemistry, vol 2. Academic, London, pp 415–441 ChapterGoogle Scholar
- Pellny TK, Lovegrove A, Freeman J, Tosi P, Love CG, Knox JP, Shewry PR, Mitchell RA (2012) Cell walls of developing wheat starchy endosperm: comparison of composition and RNA-Seq transcriptome. Plant Physiol 158(2):612–627 ArticleCASPubMedGoogle Scholar
- Pelloux J, Rusterucci C, Mellerowicz EJ (2008) New insights into pectin methylesterase structure and function. Trends Plant Sci 12(6):267–277 ArticleCASGoogle Scholar
- Peng BL, Dhar N, Liu HL, Tam KC (2011) Chemistry and applications of nanocrystalline cellulose and its derivatives: a nanotechnology perspective. Can J Chem Eng 89(5):1191–1206 ArticleCASGoogle Scholar
- Peña MJ, Vergara CE, Carpita NC (2001) The structures and architectures of plant cell walls define dietary fibre composition and the textures of foods. In: McCleary BV, Prosky L (eds) Advanced dietary fibre technology. Blackwell Science, Oxford, pp 42–60 Google Scholar
- Perez-Carrillo E, Heredia-Olea E (2018) Lignins in foods. In: Mollet LML, Uribe JAG (eds) Phenolic compounds in food: characterization and analysis. CRC Press, Boca Raton, pp 199–209 Google Scholar
- Persson S, Paredez A, Carroll A, Palsdottir H, Doblin M, Poindexter P, khitrov N, Auer M, Somerville CR (2007) Genetic evidence for three unique components in primary cell-wall cellulose synthase complexes in Arabidopsis. Proc Nat Acad Sci U S A 104(39):15566–15571 ArticleCASGoogle Scholar
- Ridley BL, O’Neill MA, Mohnen D (2001) Review. Pectins: structure, biosynthesis, and oligogalacturonide-related signaling. Phytochemistry 57(6):929–967 ArticleCASPubMedGoogle Scholar
- Ritsema T, Smeekens SC (2003) Engineering fructan metabolism in plants. J Plant Physiol 160(7):811–820 ArticleCASPubMedGoogle Scholar
- Roberfroid M (2005) Inulin: a fructan. In: Roberfroid M (ed) Inulin-type Fructans: functional food ingredients. CRC Press, Boca Raton, pp 39–59 Google Scholar
- Roberts A, Roberts E (2007) Evolution of the cellulose synthase (CesA) gene family: insights from green algae and seedless plants. In: Brown RM, Saxena IM (eds) Cellulose: molecular and structural biology. Springer, Dordrecht, pp 17–34 ChapterGoogle Scholar
- Ruiz Herrera J (1991) Biosynthesis of β-glucans in fungi. Antonie Van Leeuwenhoek 60(2):73–81 ArticleCASGoogle Scholar
- Saeed F, Pasha I, Anjum FM, Sultan MT (2011) Arabinoxylans and arabinogalactans: a comprehensive treatise. Crit Rev Food Sci Nutr 51(5):467–476 ArticleCASPubMedGoogle Scholar
- Salunkhe DK, Desai BB (1984) Asparagus and artichoke. In: Postharvest biotechnology of vegetables. CRC Press, Boca Raton, pp 117–127 Google Scholar
- Sandhu APS, Randhawa GS, Dhugga KS (2009) Plant cell wall matrix polysaccharide biosynthesis. Mol Plant 2(5):840–850 ArticleCASPubMedGoogle Scholar
- Sarkanen KV (1971) Precursors and their polymerization. In: Sarkanen KV, Ludwig CH (eds) Lignins: occurrence, formation, structure and reactions. Wiley Interscience, New York, pp 95–164 Google Scholar
- Saulnier L, Sado PE, Branlard G, Charmet G, Guillon F (2007). Wheat arabinoxylans: exploiting variation in amount and composition to develop enhanced varieties. J Cereal Sci 46:261–281 Google Scholar
- Saxena A, Hammer CF, Cihlar RL (1989) Analysis of mannans of two relatively avirulent mutant strains of Candida albicans. Infect Immun 57(2):413–419 ArticleCASPubMedPubMed CentralGoogle Scholar
- Saxena IM, Brown RM Jr (2001) Biosynthesis of cellulose. Prog Biotechnol 18(6):9–76 Google Scholar
- Saxena IM, Brown RM Jr (2005) Cellulose biosynthesis: current views and evolving concepts. Ann Bot 96(1):9–21 ArticleCASPubMedPubMed CentralGoogle Scholar
- Saxena IM, Brown RM, Dandekar T (2001) Structure-function characterization of cellulose synthase: relationship to other glycosyltransferases. Phytochemistry 57(7):1135–1148 ArticleCASPubMedGoogle Scholar
- Scheller HV, Jensen JK, Sorensen SO, Harholt J, Geshi N (2007) Biosynthesis of pectin. Physiol Plant 129:283–295 ArticleCASGoogle Scholar
- Scheller HV, Ulvskov P (2010) Hemicelluloses. Annu Rev Plant Biol 61:263–289 ArticleCASPubMedGoogle Scholar
- Seifert GJ (2004) Nucleotide sugar interconversions and cell wall biosynthesis: how to bring the inside to the outside. Curr Opin Plant Biol 7(3):277–284 ArticleCASPubMedGoogle Scholar
- Shirakawa M, Yamatoya K, Nishinari K (1998) Tailoring of xyloglucan properties using an enzyme. Food Hydrocoll 12(1):25–28 ArticleCASGoogle Scholar
- Smeekens S, Angenent G, Ebskamp M, Weisbeek P (1991) Molecular biology of fructan accumulation in plants. Biochem Soc Trans 19:565–569 ArticleCASPubMedGoogle Scholar
- Smith JL, Stanley DW (1987) Nonenzymatic lignification of asparagus. Texture Studies 18(4):339–358 ArticleGoogle Scholar
- Somerville C (2006) Cellulose synthesis in higher plants. Annu Rev Cell Dev Biol 22:53–78 ArticleCASPubMedGoogle Scholar
- Stanisich V, Stone BA (2009) Enzymology and molecular genetics of biosynthetic enzymes for (1,3)-β-glucans: prokaryotes. In: Bacic A, Fincher GB, Stone BA (eds) Chemistry, biochemistry and biology of (1–3) β-glucans and related polysaccharides. Academic, Burlington, pp 327–352 Google Scholar
- Stewart CS, Flint HL, Bryant MP (1997) The rumen bacteria. In: Hobson PN, Stewart CS (eds) The rumen microbial ecosystem. Springer Science & Business Media, Netherlands, pp 10–72 ChapterGoogle Scholar
- Stick RV, Williams SJ (2009) Disaccharides, oligosaccharides and polysaccharides. In: Carbohydrates: the essential molecules of life, 2nd edn. Elsevier, Oxford, pp 321–342 ChapterGoogle Scholar
- Stone BA (2009) Chemistry of β-glucans. In: Bacic A, Fincher GB, Stone BA (eds) Chemistry, biochemistry and biology of (1–3) β-glucans and related polysaccharides. Academic, Burlington, pp 5–46 Google Scholar
- Suzuki M (1993) History of fructan research: Rose to Edelman. In: Suzuki M, Chatterton NJ (eds) Science and technology of fructans. CRC Press, Boca Raton, pp 21–39 Google Scholar
- Talmadge KW, Keegstra K, Bauer WD, Albersheim P (1973) The structure of plant cell walls: I. The macromolecular components of the walls of suspension cultured sycamore cells with a detailed analysis of the pectic components. Plant Physiol 51(1):158–173 ArticleCASPubMedPubMed CentralGoogle Scholar
- Tanahashi M, Takeuchi H, Higuchi T (1976) Dehydrogenative polymerization of 3,5-disubstituted ρ-coumaryl. Wood Res 61:44–53 CASGoogle Scholar
- Taylor NG (2003) Interactions among three distinct CesA proteins essential for cellulose synthesis. Proc Nat Acad Sci U S A 100(3):1450–1455 ArticleCASGoogle Scholar
- Taylor NG, Laurie S, Turner SR (2000) Multiple cellulose synthase catalytic subunits are required for cellulose synthesis in Arabidopsis. Plant Cell 12(12):2529–2540 ArticleCASPubMedPubMed CentralGoogle Scholar
- Tizard IR, Carpenter RH, McAnalley BH, Kemp MC (1989) The biological activities of mannans and related complex carbohydrates. Mol Biother 1(6):290–296 CASPubMedGoogle Scholar
- Tokunaga T, Oku T, Hosoya N (1989) Utilization and excretion of a new sweetener, fructooligosaccharide (Neosugar), in rats. J Nutr 119(4):553–559 ArticleCASPubMedGoogle Scholar
- Urias-Silvas JE, Cani PD, Delmee E, Neyrinck A, Lopez MG, Delzenne NM (2008) Physiological effects of dietary fructans extracted from Agave tequilana Gto. and Dasylirion spp. Br J Nutr 99(2):254–261 ArticleCASPubMedGoogle Scholar
- Uchiyama T (1993) Metabolism in microorganisms part II. Biosynthesis and degradation of fructans by microbial enzymes other than levansucrase. In: Suzuki M, Chatterton NJ (eds) Science and technology of fructans. CRC Press, Boca Raton, pp 169–190 Google Scholar
- Van den Abbeele P, Van De Wiele T, Possemiers S (2011) Prebiotic effect and potential health benefit of arabinoxylans. Agro Food Ind Hi Tech 22(2):9–12 Google Scholar
- Van den Ende W, De Roover J, Van Laere A (1996) In vitro synthesis of fructo-oligosaccharide from inulin and fructose by purified chicory root FFT. Physiol Plant 97(2):346–352 ArticleGoogle Scholar
- Vijn I, van Dijken A, Sprenger N, van Dun K, Weisbeek R, Wiemken A, Smeekens S (1997) Fructan of the inulin neoseries is synthesized in transgenic chicory plants (Cichorium intybus L,) harbouring onion (Allium cepa L,) fructan:fructan 6G-fructosyltransferase. Plant J 11(3):387–398 ArticleCASPubMedGoogle Scholar
- Voragen F, Beldman G, Schols H (2001) Chemistry and enzymology of pectins. In: McCleary BV, Prosky L (eds) Advanced dietary fibre technology. Blackwell Science, Oxford, pp 379–389 Google Scholar
- Voragen AGJ, Pilnik W, Thibault JF, Axelos MAV, Renard CMCG (1995) Pectins. In: Stephen AM (ed) Food polysaccharides and their applications. Marcel Dekker, New York, pp 287–339 Google Scholar
- Wang M, Li Z, Fang X, Wang L, Qu Y (2012) Cellulolytic enzyme production and enzymatic hydrolysis for second-generation bioethanol production. In: Biotechnology in China III: biofuels and bioenergy. Springer, Berlin Heidelberg, pp 1–24 Google Scholar
- Waterhouse AL, Chatterton NJ (1993) Glossary of fructan terms. In: Suzuki M, Chatterton NJ (eds) Science and technology of fructans. CRC Press, Boca Raton, pp 2–7 Google Scholar
- Wertz JL, Bedue O (2013) Hemicelluloses and lignin, other key constituents of biomass. In: Wertz JL, Bedue O (eds) Lignocellulosic Biorefineries. EPFL Press, Taylor and Francis, Boca Raton, pp 239–298 ChapterGoogle Scholar
- Xiao B, Xun XF, Sun RC (2001) Chemical, structural, and thermal characterization of alkali-soluble lignins and hemicelluloses, and cellulose from maize stems, rye straw, and rice straw. Polym Degrad Stab 74:307–319 ArticleCASGoogle Scholar
- Yamamoto E, Bokelman GH, Lewis N (1989) Phenylpropanoid metabolism in cell-walls. In: Lewis G (ed) Plant cell wall polymers: biogenesis and biodegradation, ACS Symposium Series, vol 399. American Chemical Society, New York, pp 68–88 ChapterGoogle Scholar
- York WS, Darvill AG, McNeil M, Stevenson TT, Albersheim P (1986) Isolation and characterizations of plant cell walls and cell wall components. Methods Enzymol 118:3–40 ArticleCASGoogle Scholar
- Zablackis E, Huang J, Muller B, Darvill AG, Albersheim P (1995) Characterization of the cell-wall polysaccharides of Arabidopsis thaliana leaves. Plant Physiol 107(4):1129–1138 ArticleCASPubMedPubMed CentralGoogle Scholar
- Zekovic DB (2005) Natural and modified (1→3)-β-D-glucans in health promotion and disease alleviation. Crit Rev Biotechnol 25(4):205–230 ArticleCASPubMedGoogle Scholar
- Zhang T, M. L. S, Tittmann B, Cosgrove DJ (2014) Visualization of the nanoscale pattern of recently-deposited cellulose microfibrils and matrix materials in never-dried primary walls of the onion epidermis. Cellulose 21(2):853–862 ArticleGoogle Scholar
Author information
Authors and Affiliations
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Centro de Biotecnología FEMSA, Monterrey, NL, Mexico Sergio O. Serna Saldívar & Fabiola E. Ayala Soto
- Sergio O. Serna Saldívar
You can also search for this author in PubMed Google Scholar
You can also search for this author in PubMed Google Scholar
Corresponding author
Editor information
Editors and Affiliations
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Centro de Biotecnología FEMSA, Monterrey, Nuevo León, Mexico Jorge Welti-Chanes
- Tecnologico de Monterrey Escuela de Ingeniería y Ciencias, Centro de Biotecnología FEMSA, Monterrey, Nuevo León, Mexico Sergio O. Serna-Saldívar
- Food Science and Technology Department, The Ohio State University, Colombo, OH, USA Osvaldo Campanella
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Querétaro, Querétaro, Mexico Viridiana Tejada-Ortigoza
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Serna Saldívar, S.O., Ayala Soto, F.E. (2020). Chemical Composition and Biosynthesis of Dietary Fiber Components. In: Welti-Chanes, J., Serna-Saldívar, S., Campanella, O., Tejada-Ortigoza, V. (eds) Science and Technology of Fibers in Food Systems. Food Engineering Series. Springer, Cham. https://doi.org/10.1007/978-3-030-38654-2_2
Download citation
- DOI : https://doi.org/10.1007/978-3-030-38654-2_2
- Published : 16 April 2020
- Publisher Name : Springer, Cham
- Print ISBN : 978-3-030-38653-5
- Online ISBN : 978-3-030-38654-2
- eBook Packages : Chemistry and Materials ScienceChemistry and Material Science (R0)
Share this chapter
Anyone you share the following link with will be able to read this content:
Get shareable link
Sorry, a shareable link is not currently available for this article.
Copy to clipboard
Provided by the Springer Nature SharedIt content-sharing initiative